21718
 3 Hours / 70 Marks

Seat No.

Instructions : (1) All questions are compulsory.
 (2) Illustrate your answers with neat sketches wherever necessary.
 (3) Figures to the right indicate full marks.
 (4) Assume suitable data, if necessary.

SECTION - I

1. Attempt any six of the following :
a) Define reluctance and flux density.
b) Define form factor and peak factor.
c) The frequency of an a.c. supply is 60 Hz . Calculate the angular frequency of it.
d) Define transformation ratio of a transformer.
e) Write the voltage and current equations when a.c. suply is connected across a resistor.
f) State the working principle of single phase transformer.
g) State different types of single phase induction motors.
h) Convert the following into polar form
i) $4+\mathrm{j} 5$
ii) $3-\mathrm{j} 6$
2. Attempt any three of the following:
a) State and explain Faradays laws of electro magnetic induction.
b) Draw a 3 phase balanced star connected load and indicate $\mathrm{V}_{\mathrm{L}}, \mathrm{V}_{\mathrm{ph}}, \mathrm{I}_{\mathrm{L}}$ and I_{ph} on it. Write the relation between
i) line voltage and phase voltage
ii) line current and phase current.
c) Compare auto transformer and two winding transformer on the basis of
i) no. of windings
ii) efficiency
iii) electrical isolation
iv) applications
d) Explain the operation of split phase induction motor with neat diagram.
3. Attempt any two of the following :
a) A resistance of 100Ω and inductance of 0.5 H are connected in series across a 230 V , 50 Hz ac supply. Calculate
i) Angular frequency
ii) Inductive reactance
iii) Impedance
iv) Current
v) Power factor
vi) Power consumed
b) Explain statically induced EMF and dynamically induced EMF with neat diagram and examples.
c) Define transformer and derive EMF equation of transformer.
SECTION - II
4. Attempt any five of the following :
a) State the difference between active and passive components.
b) Define efficiency and PIV.
c) List different types of resistors and capacitors.
d) Draw the symbols of PNP and NPN transistor.
e) Draw the symbol of ideal voltage source and practical current source.
f) Write the applications of BJT.
5. Attempt any three of the following :
a) Find the value of resistor from the given color code.
i) Blue, red, orange, silver
ii) Orange, Orange, Brown, Gold.
b) Explain zener diode as voltage regulator.
c) Compare CE, CB and CC configurations.
d) Draw the circuit, input and O / P waveforms of full wave rectifier (centre tap) with π filter.
e) Draw sinusoidal signal with its time and freq. domain representation.
6. Attempt any two of the following :
a) Explain transistor as a switch and amplifier.
b) i) Differentiate between analog and digital ICs.
ii) Draw the output characteristics of CE configuration and label various regions on it.
c) Explain the operation of a full wave bridge rectifier with capacitor filter. Draw input and output waveforms.
