22406

	324 Ho		/	70	Marks	Seat	No.								
Instructions –			·	(1)	All Questions are Compulsory.										
				(2)	Answer each	next main	Que	stio	n c	on a	a ne	ew	pag	e.	
				(3)	Illustrate your necessary.	answers	with	nea	t sl	ketc	hes	wł	nere	ever	
				(4)	Figures to the	e right ind	licate	ful	l m	ark	s.				
				(5)	Assume suitab	ole data, i	f nec	essa	ary.						
				(6)	Mobile Phone Communicatio Examination I	n devices		•							
														Ma	rks
1.		Atte	mpt	any	<u>FIVE</u> of the	following	:								10
	a)	Defir	ne s	ysten	n and surround	ling.									
	b)	Diffe	rent	iate	state function	and path f	functi	on.							
	c)	Defin	ne s	tanda	rd entropy.										
	d)	Write	e do	wn V	Van der Waals	equation	for re	eal	gas	es.					
e) State Zeroth				roth	law of thermo	dynamics.									
	f)	Defin	ne I	ntern	al energy.										
	g)	Defir	ne I	Le-Ch	atelier's princij	ple.									
2.		Atte	mpt	any	THREE of t	he followi	ng:								12
	a)	Defir	ne e	xtens	ive and intens	ive proper	ty w	ith	exa	mp	le.				
	b)				rmal process, a process.	Isobaric p	rocess	s, Is	socł	nori	c p	roce	ess		
	()	State	1 st	Lou	of thermodyn	amics wit	h ma	that	mat	ical	ov	nra		n	

- c) State 1st Law of thermodynamics with mathematical expression.
- d) State the sign convention used for work and heat.

3. Attempt any <u>THREE</u> of the following:

- a) Explain Joule-Thomson Porous Plug experiment.
- b) Draw the phase diagram for sulphur system with appropriate labelling.
- c) Derive the relation between 1st Law and 2nd Law of thermodynamics.
- d) Calculate Kp for ammonia synthesis at a total pressure of 30 atm at 400°C. Reaction is $N_2 + 3H_2 \rightarrow 2NH_3$. Percentage of ammonia at equilibrium is 10%.

4. Attempt any THREE of the following:

- a) Explain T-V diagram for a pure substance.
- b) Derive the relation between Kp and Kc.
- c) Draw the P-H diagram.
- d) Calculate the entropy change for the following gas phase reaction occuring at 1 bar and 298 K. $CO + Y_2O_2 \rightarrow CO_2$. The absolute entropies of CO, O_2 and CO_2 are respectively. 198 J/molK, 205.2 J/molK and 213.8 J/molK.
- e) Show that for an equimolar mixture consisting of 2 distinct ideal gases, the entropy change during isothermal mixing is R ln 2.

5. Attempt any <u>TWO</u> of the following:

- a) Derive the relationship between conversion and thermodynamic equilibrium constant for 1st order reversible reaction $A \rightleftharpoons R$.
- b) One mole of an ideal mono atomic gas expands reversibly from a volume of 10 liter and temp. 298 K to a volume of 20 litres and temp. 250 K. Assuming Cv_2 3/2 R. Calculate entropy change for the process.
- c) Explain the phase diagram for CO_2 system.

12

12

12

22406

6. Attempt any TWO of the following:

- a) For the reaction, $2NaHSO_4 \leftrightarrow Na_2S_2O_7 + H_2O_{\Delta H}$ at 298 K = 19800 cal. $\Delta Gat 298$ K = 9000 cal. Assuming ΔH to be constant, calculate the dissociation pressure of the reaction at 700 K.
- b) State Gibbs phase rule. Define degree of freedom. A binary mixture of benzene and toluene is in equilibrium with its own vapour. Determine the number of degrees of freedom.
- c) Calculate ΔU and ΔH in kJ for 1 kmol water as it is vaporised at temperature of 373 K and constant pressure of 101.3 kPa. The specific volume of liquid and vapour at these conditions are 1.04×10^{-3} and $1.675 \text{ m}^3/\text{kmol}$ respectively. 1030 kJ of heat is added to water for this change.

12